aioamqp Documentation
Release 0.4.0

Benoit Calvez

August 19, 2015

Contents

1 Limitations

3

1.1 Introduction o . e e e e e e e e 3
1.2 Changelog o e e e e e e e e e e e 3
1.3 APL . . e 4

2 Indices and tables 7
Python Module Index 9

aioamqgp Documentation, Release 0.4.0

Aioamqp is a library to connect to an amqp broker. It uses asyncio under the hood

Contents 1

aioamqgp Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Limitations

For the moment, aioamqp is tested against Rabbitmg.

Contents:

1.1 Introduction

This is the documentation for the aioamqp module.

1.1.1 Prerequisites

Aioamqgp works only with python >= 3.3 using asyncio library. If your are using Python 3.3 you’ll have to install
asyncio from pypi, but asyncio is now included in python 3.4 standard library.

1.1.2 Installation

You can install the most recent aioamqp release from pypi using pip or easy_install:

pip install aioamgp
easy_install aioamgp

1.2 Changelog

1.2.1 Next version (not yet released)

e (Call the error callback on all circumtstances.

1.2.2 Aioamqgp 0.3.0

¢ The consume callback takes now 3 parameters: body, envelope, properties, closes #33.

 Channel ids are now recycled, closes #36.

aioamqgp Documentation, Release 0.4.0

1.2.3 Aioamqp 0.2.1

* connect returns a transport and protocol instance.

1.2.4 Aioamqgp 0.2.0

» Use a callback to consume messages.

1.3 API

1.3.1 Basics

There are two principal objects when using aioamqp:
» The protocol object, used to begin a connection to aioamqp,

» The channel object, used when creating a new channel to effectively use an AMQP channel.

1.3.2 Starting a connection

Starting a connection to AMQP really mean instanciate a new asyncio Protocol subclass:

import asyncio
import aioamgp

Qasyncio.coroutine
def connect () :
try:
transport, protocol = yield from aioamgp.connect () # use default parameters
except aiocamgp.AmgpClosedConnection:
print ("closed connections")
return

print ("connected !")
yield from asyncio.sleep(1l)

print ("close connection")
yield from protocol.close ()

transport.close ()

asyncio.get_event_loop () .run_until_complete (connect ())

In this example, we just use the method “start_connection” to begin a communication with the server, which deals
with credentials and connection tunning.

1.3.3 Handling errors

The connect() method has an extra ‘on_error’ kwarg option. This on_error is a callback or a coroutine function which
is called with an exception as the argument:

4 Chapter 1. Limitations

aioamqgp Documentation, Release 0.4.0

import asyncio
import aioamqgp

@asyncio.coroutine
def error_callback (exception) :
print (exception)

@asyncio.coroutine
def connect () :
try:
transport, protocol = yield from aiocamgp.connect (
host="nonexistant.com',
on_error=error_callback,
)
except aioamgp.AmgpClosedConnection:
print ("closed connections")
return

asyncio.get_event_loop () .run_until_complete (connect ())

1.3.4 Publishing messages

A channel is the main object when you want to send message to an exchange, or to consume message from a queue:

’channel = yield from protocol.channel ()

When you want to produce some content, you declare a queue then publish message into it:

queue = yield from channel.queue_declare ("my_queue'")
yield from queue.publish("aiocamgp hello", '', "my_queue")

Note: we’re pushing message to “my_queue” queue, through the default amqgp exchange.

1.3.5 Consuming messages

When consuming message, you connect to the same queue you previously created:

import asyncio
import aioamqgp

@asyncio.coroutine
def callback (body, envelope, properties):
print (body)

channel = yield from protocol.channel ()
yield from channel.basic_consume ("my_queue", callback=callback)

The basic_consume method tells the server to send us the messages, and will call callback with amgp response
arguments.

The consumer_tag is the id of your consumer, and the delivery_tag is the tag used if you want to acknowledge
the message.

In the callback:

¢ the first body parameter is the message

1.3. API 5

aioamqgp Documentation, Release 0.4.0

 the envelope is an instance of envelope.Envelope class which encapsulate a group of amqp parameter such

as:

consumer_tag
delivery_tag
exchange_name
routing_key
is_redeliver

 the properties are message properties, an instance of properties.Properties with the following members:

content_type
content_encoding
headers
delivery_mode
priority
correlation_id
reply_to
expiration
message_id
timestamp

type

user_id

app_id
cluster_id

1.3.6 Using exchanges

You can bind an exchange to a queue:

channel = yield from protocol.channel ()

exchange = yield from channel.exchange_declare (exchange_name="my_exchange",
yield from channel.queue_declare ("my_queue")

yield from channel.queue_bind("my_queue", "my_exchange")

type_name="{

Chapter 1. Limitations

anout ")

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

aioamqgp Documentation, Release 0.4.0

8 Chapter 2. Indices and tables

Python Module Index

a

aioamgp, 4

aioamqgp Documentation, Release 0.4.0

10 Python Module Index

Index

A

aioamqp (module), 4

11

	Limitations
	Introduction
	Changelog
	API

	Indices and tables
	Python Module Index

