
aioamqp Documentation
Release 0.15.0

Benoît Calvez

Apr 05, 2022

Contents

1 Limitations 3
1.1 Introduction . 3
1.2 API . 3
1.3 Examples . 10
1.4 Changelog . 15

2 Indices and tables 19

Python Module Index 21

Index 23

i

ii

aioamqp Documentation, Release 0.15.0

Aioamqp is a library to connect to an amqp broker. It uses asyncio under the hood.

Contents 1

aioamqp Documentation, Release 0.15.0

2 Contents

CHAPTER 1

Limitations

For the moment, aioamqp is tested against Rabbitmq.

Contents:

1.1 Introduction

Aioamqp library is a pure-Python implementation of the AMQP 0.9.1 protocol using asyncio.

1.1.1 Prerequisites

Aioamqp works only with python >= 3.6 using asyncio library.

1.1.2 Installation

You can install the most recent aioamqp release from pypi using pip or easy_install:

pip install aioamqp

1.2 API

1.2.1 Basics

There are two principal objects when using aioamqp:

• The protocol object, used to begin a connection to aioamqp,

• The channel object, used when creating a new channel to effectively use an AMQP channel.

3

aioamqp Documentation, Release 0.15.0

1.2.2 Starting a connection

Starting a connection to AMQP really mean instanciate a new asyncio Protocol subclass.

aioamqp.connect(host, port, login, password, virtualhost, ssl, login_method, insist, protocol_factory, ver-
ify_ssl, loop, kwargs)→ Transport, AmqpProtocol

Convenient method to connect to an AMQP broker

Parameters

• host (str) – the host to connect to

• port (int) – broker port

• login (str) – login

• password (str) – password

• virtualhost (str) – AMQP virtualhost to use for this connection

• ssl (bool) – create an SSL connection instead of a plain unencrypted one

• verify_ssl (bool) – verify server’s SSL certificate (True by default)

• login_method (str) – AMQP auth method

• insist (bool) – insist on connecting to a server

• protocol_factory (AmqpProtocol) – factory to use, if you need to subclass Amqp-
Protocol

• loop (EventLopp) – set the event loop to use

• kwargs (dict) – arguments to be given to the protocol_factory instance

import asyncio
import aioamqp

async def connect():
try:

transport, protocol = await aioamqp.connect() # use default parameters
except aioamqp.AmqpClosedConnection:

print("closed connections")
return

print("connected !")
await asyncio.sleep(1)

print("close connection")
await protocol.close()
transport.close()

asyncio.get_event_loop().run_until_complete(connect())

In this example, we just use the method “start_connection” to begin a communication with the server, which deals
with credentials and connection tunning.

If you’re not using the default event loop (e.g. because you’re using aioamqp from a different thread), call
aioamqp.connect(loop=your_loop).

The AmqpProtocol uses the kwargs arguments to configure the connection to the AMQP Broker:

AmqpProtocol.__init__(self, *args, **kwargs):
The protocol to communicate with AMQP

4 Chapter 1. Limitations

aioamqp Documentation, Release 0.15.0

Parameters

• channel_max (int) – specifies highest channel number that the server permits. Usable
channel numbers are in the range 1..channel-max. Zero indicates no specified limit.

• frame_max (int) – the largest frame size that the server proposes for the connection,
including frame header and end-byte. The client can negotiate a lower value. Zero means
that the server does not impose any specific limit but may reject very large frames if it cannot
allocate resources for them.

• heartbeat (int) – the delay, in seconds, of the connection heartbeat that the server
wants. Zero means the server does not want a heartbeat.

• loop (Asyncio.EventLoop) – specify the eventloop to use.

• client_properties (dict) – configure the client to connect to the AMQP server.

1.2.3 Handling errors

The connect() method has an extra ‘on_error’ kwarg option. This on_error is a callback or a coroutine function which
is called with an exception as the argument:

import asyncio
import socket
import aioamqp

async def error_callback(exception):
print(exception)

async def connect():
try:

transport, protocol = await aioamqp.connect(
host='nonexistant.com',
on_error=error_callback,
client_properties={

'program_name': "test",
'hostname' : socket.gethostname(),

},

)
except aioamqp.AmqpClosedConnection:

print("closed connections")
return

asyncio.get_event_loop().run_until_complete(connect())

1.2.4 Publishing messages

A channel is the main object when you want to send message to an exchange, or to consume message from a queue:

channel = await protocol.channel()

When you want to produce some content, you declare a queue then publish message into it:

await channel.queue_declare("my_queue")
await channel.publish("aioamqp hello", '', "my_queue")

1.2. API 5

aioamqp Documentation, Release 0.15.0

Note: we’re pushing message to “my_queue” queue, through the default amqp exchange.

1.2.5 Consuming messages

When consuming message, you connect to the same queue you previously created:

import asyncio
import aioamqp

async def callback(channel, body, envelope, properties):
print(body)

channel = await protocol.channel()
await channel.basic_consume(callback, queue_name="my_queue")

The basic_consume method tells the server to send us the messages, and will call callback with amqp response
arguments.

The consumer_tag is the id of your consumer, and the delivery_tag is the tag used if you want to acknowledge
the message.

In the callback:

• the first body parameter is the message

• the envelope is an instance of envelope.Envelope class which encapsulate a group of amqp parameter such
as:

consumer_tag
delivery_tag
exchange_name
routing_key
is_redeliver

• the properties are message properties, an instance of properties.Properties with the following
members:

content_type
content_encoding
headers
delivery_mode
priority
correlation_id
reply_to
expiration
message_id
timestamp
message_type
user_id
app_id
cluster_id

Server Cancellation

RabbitMQ offers an AMQP extension to notify a consumer when a queue is deleted. See Consumer Cancel Notifica-
tion for additional details. aioamqp enables the extension for all channels but takes no action when the consumer is
cancelled. Your application can be notified of consumer cancellations by adding a callback to the channel:

6 Chapter 1. Limitations

https://www.rabbitmq.com/consumer-cancel.html
https://www.rabbitmq.com/consumer-cancel.html

aioamqp Documentation, Release 0.15.0

async def consumer_cancelled(channel, consumer_tag):
implement required cleanup here
pass

async def consumer(channel, body, envelope, properties):
await channel.basic_client_ack(envelope.delivery_tag)

channel = await protocol.channel()
channel.add_cancellation_callback(consumer_cancelled)
await channel.basic_consume(consumer, queue_name="my_queue")

The callback can be a simple callable or an asynchronous co-routine. It can be used to restart consumption on the
channel, close the channel, or anything else that is appropriate for your application.

1.2.6 Queues

Queues are managed from the Channel object.

Channel.queue_declare(queue_name, passive, durable, exclusive, auto_delete, no_wait, arguments,
timeout)→ dict

Coroutine, creates or checks a queue on the broker

Parameters

• queue_name (str) – the queue to receive message from

• passive (bool) – if set, the server will reply with Declare-Ok if the queue already exists
with the same name, and raise an error if not. Checks for the same parameter as well.

• durable (bool) – if set when creating a new queue, the queue will be marked as durable.
Durable queues remain active when a server restarts.

• exclusive (bool) – request exclusive consumer access, meaning only this consumer can
access the queue

• no_wait (bool) – if set, the server will not respond to the method

• arguments (dict) – AMQP arguments to be passed when creating the queue.

• timeout (int) – wait for the server to respond after timeout

Here is an example to create a randomly named queue with special arguments x-max-priority:

result = await channel.queue_declare(
queue_name='', durable=True, arguments={'x-max-priority': 4}

)

Channel.queue_delete(queue_name, if_unused, if_empty, no_wait, timeout)
Coroutine, delete a queue on the broker

Parameters

• queue_name (str) – the queue to receive message from

• if_unused (bool) – the queue is deleted if it has no consumers. Raise if not.

• if_empty (bool) – the queue is deleted if it has no messages. Raise if not.

• no_wait (bool) – if set, the server will not respond to the method

1.2. API 7

aioamqp Documentation, Release 0.15.0

• arguments (dict) – AMQP arguments to be passed when creating the queue.

• timeout (int) – wait for the server to respond after timeout

Channel.queue_bind(queue_name, exchange_name, routing_key, no_wait, arguments, timeout)
Coroutine, bind a queue to an exchange

Parameters

• queue_name (str) – the queue to receive message from.

• exchange_name (str) – the exchange to bind the queue to.

• routing_key (str) – the routing_key to route message.

• no_wait (bool) – if set, the server will not respond to the method

• arguments (dict) – AMQP arguments to be passed when creating the queue.

• timeout (int) – wait for the server to respond after timeout

This simple example creates a queue, an exchange and bind them together.

channel = await protocol.channel()
await channel.queue_declare(queue_name='queue')
await channel.exchange_declare(exchange_name='exchange')

await channel.queue_bind('queue', 'exchange', routing_key='')

Channel.queue_unbind(queue_name, exchange_name, routing_key, arguments, timeout)
Coroutine, unbind a queue and an exchange.

Parameters

• queue_name (str) – the queue to receive message from.

• exchange_name (str) – the exchange to bind the queue to.

• no_wait (bool) – if set, the server will not respond to the method

• arguments (dict) – AMQP arguments to be passed when creating the queue.

• timeout (int) – wait for the server to respond after timeout

PARAM STR ROUTING_KEY THE ROUTING_KEY TO ROUTE MESSAGE.

Channel.queue_purge(queue_name, no_wait, timeout)
Coroutine, purge a queue

Parameters queue_name (str) – the queue to receive message from.

1.2.7 Exchanges

Exchanges are used to correctly route message to queue: a publisher publishes a message into an exchanges, which
routes the message to the corresponding queue.

Channel.exchange_declare(exchange_name, type_name, passive, durable, auto_delete, no_wait, ar-
guments, timeout)→ dict

Coroutine, creates or checks an exchange on the broker

Parameters

• exchange_name (str) – the exchange to receive message from

• type_name (str) – the exchange type (fanout, direct, topics . . .)

8 Chapter 1. Limitations

aioamqp Documentation, Release 0.15.0

• passive (bool) – if set, the server will reply with Declare-Ok if the exchange already
exists with the same name, and raise an error if not. Checks for the same parameter as well.

• durable (bool) – if set when creating a new exchange, the exchange will be marked as
durable. Durable exchanges remain active when a server restarts.

• auto_delete (bool) – if set, the exchange is deleted when all queues have finished
using it.

• no_wait (bool) – if set, the server will not respond to the method

• arguments (dict) – AMQP arguments to be passed when creating the exchange.

• timeout (int) – wait for the server to respond after timeout

Note: the internal flag is deprecated and not used in this library.

channel = await protocol.channel()
await channel.exchange_declare(exchange_name='exchange', auto_delete=True)

Channel.exchange_delete(exchange_name, if_unused, no_wait, timeout)
Coroutine, delete a exchange on the broker

Parameters

• exchange_name (str) – the exchange to receive message from

• if_unused (bool) – the exchange is deleted if it has no consumers. Raise if not.

• no_wait (bool) – if set, the server will not respond to the method

• arguments (dict) – AMQP arguments to be passed when creating the exchange.

• timeout (int) – wait for the server to respond after timeout

Channel.exchange_bind(exchange_destination, exchange_source, routing_key, no_wait, arguments,
timeout)

Coroutine, binds two exchanges together

Parameters

• exchange_destination (str) – specifies the name of the destination exchange to
bind

• exchange_source (str) – specified the name of the source exchange to bind.

• exchange_destination – specifies the name of the destination exchange to bind

• no_wait (bool) – if set, the server will not respond to the method

• arguments (dict) – AMQP arguments to be passed when creating the exchange.

• timeout (int) – wait for the server to respond after timeout

Channel.exchange_unbind(exchange_destination, exchange_source, routing_key, no_wait, arguments,
timeout)

Coroutine, unbind an exchange from an exchange.

Parameters

• exchange_destination (str) – specifies the name of the destination exchange to
bind

• exchange_source (str) – specified the name of the source exchange to bind.

• exchange_destination – specifies the name of the destination exchange to bind

1.2. API 9

aioamqp Documentation, Release 0.15.0

• no_wait (bool) – if set, the server will not respond to the method

• arguments (dict) – AMQP arguments to be passed when creating the exchange.

• timeout (int) – wait for the server to respond after timeout

1.3 Examples

Those examples are ported from the RabbitMQ tutorial. They are specific to aioamqp and uses
coroutines exclusievely. Please read both documentation together, as the official documenta-
tion explain how to use the AMQP protocol correctly.

Do not hesitate to use RabbitMQ Shiny management interfaces, it really helps to understand
which message is stored in which queues, and which consumer unqueues what queue.

Using docker, you can run RabbitMQ using the following command line. Using this command
line you will be able to run the examples and access the RabbitMQ management interface using
the login guest and the password guest.

Contents:

1.3.1 “Hello World!” : The simplest thing that does something

Sending

Our first script to send a single message to the queue.

Creating a new connection:

import asyncio
import aioamqp

async def connect():
transport, protocol = await aioamqp.connect()
channel = await protocol.channel()

asyncio.get_event_loop().run_until_complete(connect())

This first scripts shows how to create a new connection to the AMQP broker.

Now we have to declare a new queue to receive our messages:

await channel.queue_declare(queue_name='hello')

We’re now ready to publish message on to this queue:

await channel.basic_publish(
payload='Hello World!',
exchange_name='',
routing_key='hello'

)

We can now close the connection to rabbit:

10 Chapter 1. Limitations

http://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/management.html
http://localhost:15672

aioamqp Documentation, Release 0.15.0

close using the `AMQP` protocol
await protocol.close()
ensure the socket is closed.
transport.close()

You can see the full example in the file example/send.py.

Receiving

We now want to unqueue the message in the consumer side.

We have to ensure the queue is created. Queue declaration is indempotant.

await channel.queue_declare(queue_name='hello')

To consume a message, the library calls a callback (which MUST be a coroutine):

async def callback(channel, body, envelope, properties):
print(body)

await channel.basic_consume(callback, queue_name='hello', no_ack=True)

1.3.2 Work Queues : Distributing tasks among workers

The main purpose of this part of the tutorial is to ack a message in RabbitMQ only when it’s really processed by a
worker.

new_task

This publisher creates a queue with the durable flag and publish a message with the property persistent.

await channel.queue('task_queue', durable=True)

await channel.basic_publish(
payload=message,
exchange_name='',
routing_key='task_queue',
properties={

'delivery_mode': 2,
},

)

worker

The purpose of this worker is to simulate a resource consuming execution which delays the processing of the other
messages.

The worker declares the queue with the exact same argument of the new_task producer.

await channel.queue('task_queue', durable=True)

Then, the worker configure the QOS: it specifies how the worker unqueues message.

1.3. Examples 11

aioamqp Documentation, Release 0.15.0

await channel.basic_qos(prefetch_count=1, prefetch_size=0, connection_
→˓global=False)

Finaly we have to create a callback that will ack the message to mark it as processed. Note: the code in the callback
calls asyncio.sleep to simulate an asyncio compatible task that takes time. You probably want to block the eventloop
to simulate a CPU intensive task using time.sleep.

async def callback(channel, body, envelope, properties):
print(" [x] Received %r" % body)
await asyncio.sleep(body.count(b'.'))
print(" [x] Done")
await channel.basic_client_ack(delivery_tag=envelope.delivery_tag)

1.3.3 Publish Subscribe : Sending messages to many consumers at once

This part of the tutorial introduce exchange.

A emit_log.py scripts publish messages into a fanout exchange. Then the receive_log.py script creates a temporary
queue (which is deleted on the disconnection).

If the script receive_log.py is ran multiple times, all the instance will receive the message emitted by emit_log.

Publisher

The publisher create a new fanout exchange:

await channel.exchange_declare(exchange_name='logs', type_name='fanout')

And publish message into that exchange:

await channel.basic_publish(message, exchange_name='logs', routing_key='')

Consumer

The consumer create a temporary queue and binds it to the exchange.

await channel.exchange(exchange_name='logs', type_name='fanout')
let RabbitMQ generate a random queue name
result = await channel.queue(queue_name='', exclusive=True)

queue_name = result['queue']
await channel.queue_bind(exchange_name='logs', queue_name=queue_name,
→˓routing_key='')

1.3.4 Routing : Receiving messages selectively

Routing is an interesting concept in RabbitMQ/AMQP: in this tutorial, messages are published to a direct exchange
with a specific routing_key (the log severity The consumer create a queue, binds the queue to the exchange and
specifies the severity he wants to receive.

12 Chapter 1. Limitations

aioamqp Documentation, Release 0.15.0

Publisher

The publisher creater the direct exchange:

await channel.exchange(exchange_name='direct_logs', type_name='direct')

Message are published into that exchange and routed using the severity for instance:

await channel.publish(message, exchange_name='direct_logs', routing_key='info
→˓')

Consumer

The consumer may subscribe to multiple severities. To accomplish this purpose, it create a queue bind this queue
multiple time using the (exchange_name, routing_key) configuration:

result = await channel.queue(queue_name='', durable=False, auto_delete=True)

queue_name = result['queue']

severities = sys.argv[1:]
if not severities:

print("Usage: %s [info] [warning] [error]" % (sys.argv[0],))
sys.exit(1)

for severity in severities:
await channel.queue_bind(

exchange_name='direct_logs',
queue_name=queue_name,
routing_key=severity,

)

1.3.5 Topics : Receiving messages based on a pattern

Topics are another exchange type. It allows message routing depending on a pattern, to route a message for multiple
criteria. We’re going to use a topic exchange in our logging system. We’ll start off with a working assumption that the
routing keys of logs will have two words: “<facility>.<severity>”.

Publisher

The publisher prepares the exchange and publish messages using a routing_key which will be matched by later filters

await channel.exchange('topic_logs', 'topic')

await await channel.publish(message, exchange_name=exchange_name, routing_
→˓key='anonymous.info')
await await channel.publish(message, exchange_name=exchange_name, routing_
→˓key='kern.critical')

Consumer

The consumer selects the combination of ‘facility’/’severity’ he wants to subscribe to:

1.3. Examples 13

aioamqp Documentation, Release 0.15.0

for binding_key in ("*.critical", "nginx.*"):
await channel.queue_bind(

exchange_name='topic_logs',
queue_name=queue_name,
routing_key=binding_key

)

1.3.6 RPC: Remote procedure call implementation

This tutorial will try to implement the RPC as in the RabbitMQ’s tutorial.

The API will probably look like:

fibonacci_rpc = FibonacciRpcClient()
result = await fibonacci_rpc.call(4)
print("fib(4) is %r" % result)

Client

In this case it’s no more a producer but a Client: we will send a message in a queue and wait for a response in another.
For that purpose, we publish a message to the rpc_queue and add a reply_to properties to let the server know where to
respond.

result = await channel.queue_declare(exclusive=True)
callback_queue = result['queue']

channel.basic_publish(
exchange='',
routing_key='rpc_queue',
properties={

'reply_to': callback_queue,
},
body=request,

)

Note: the client use a waiter (an asyncio.Event) which will be set when receiving a response from the previously sent
message.

Server

When unqueing a message, the server will publish a response directly in the callback. The correlation_id is used to let
the client know it’s a response from this request.

async def on_request(channel, body, envelope, properties):
n = int(body)

print(" [.] fib(%s)" % n)
response = fib(n)

await channel.basic_publish(
payload=str(response),
exchange_name='',
routing_key=properties.reply_to,

(continues on next page)

14 Chapter 1. Limitations

aioamqp Documentation, Release 0.15.0

(continued from previous page)

properties={
'correlation_id': properties.correlation_id,

},
)

await channel.basic_client_ack(delivery_tag=envelope.delivery_tag)

1.4 Changelog

1.4.1 Aioamqp 0.15.0

• Add support for Python 3.9 and 3.10.

• Drop support for Python 3.5 and 3.6.

• Fix annoying auth method warning because of a wrong defined default argument (closes #214).

• Support amqps:// URLs.

• Properly handle disabled heartbeats.

• Properly handle concurrent calls to basic_cancel.

• Drastically reduce overhead of heartbeats.

• Drop support for non-bytes payloads in basic_publish.

1.4.2 Aioamqp 0.14.0

• Fix waiter already exist issue when creating multiple queues (closes #105).

• Rename type to message_type in constant.Properties object to be full compatible with pamqp.

• Add python 3.8 support.

1.4.3 Aioamqp 0.13.0

• SSL Connections must be configured with an SSLContext object in connect and from_url (closes #142).

• Uses pamqp to encode or decode protocol frames.

• Drops support of python 3.3 and python 3.4.

• Uses async and await keywords.

• Fix pamqp _frame_parts call, now uses exposed frame_parts

1.4.4 Aioamqp 0.12.0

• Fix an issue to use correct int encoder depending on int size (closes #180).

• Call user-specified callback when a consumer is cancelled.

1.4. Changelog 15

aioamqp Documentation, Release 0.15.0

1.4.5 Aioamqp 0.11.0

• Fix publish str payloads. Support will be removed in next major release.

• Support for basic_return (closes #158).

• Support for missings encoding and decoding types (closes #156).

1.4.6 Aioamqp 0.10.0

• Remove timeout argument from all channel methods.

• Clean up uses of no_wait argument from most channel methods.

• Call drain() after sending every frame (or group of frames).

• Make sure AmqpProtocol behaves identically on 3.4 and 3.5+ wrt EOF reception.

1.4.7 Aioamqp 0.9.0

• Fix server cancel handling (closes #95).

• Send “close ok” method on server-initiated close.

• Validate internal state before trying to send messages.

• Clarify which BSD license we actually use (3-clause).

1.4.8 Aioamqp 0.8.2

• Really turn off heartbeat timers (closes #112).

1.4.9 Aioamqp 0.8.1

• Turn off heartbeat timers when the connection is closed (closes #111).

• Fix tests with python 3.5.2 (closes #107).

• Properly handle unlimited sized payloads (closes #103).

• API fixes in the documentation (closes #102, #110).

• Add frame properties to returned value from basic_get() (closes #100).

1.4.10 Aioamqp 0.8.0

• Complete overhaul of heartbeat (closes #96).

• Prevent closing channels multiple times (inspired by PR #88).

16 Chapter 1. Limitations

aioamqp Documentation, Release 0.15.0

1.4.11 Aioamqp 0.7.0

• Add basic_client_nack and recover method (PR #72).

• Sends server-close-ok in response to a server-close.

• Disable Nagle algorithm in connect (closes #70).

• Handle CONNECTION_CLOSE during initial protocol handshake (closes #80).

• Supports for python 3.5.

• Few code refactors.

• Dispatch does not catch KeyError anymore.

1.4.12 Aioamqp 0.6.0

• The client_properties is now fully configurable.

• Add more documentation.

• Simplify the channel API: queue_name arg is no more required to declare a queue. basic_qos arguments
are now optional.

1.4.13 Aioamqp 0.5.1

• Fixes packaging issues when uploading to pypi.

1.4.14 Aioamqp 0.5.0

• Add possibility to pass extra keyword arguments to protocol_factory when from_url is used to create a connec-
tion.

• Add SSL support.

• Support connection metadata customization, closes #40.

• Remove the use of rabbitmqctl in tests.

• Reduce the memory usage for channel recycling, closes #43.

• Add the usage of a previously created eventloop, closes #56.

• Removes the checks for coroutine callbacks, closes #55.

• Connection tuning are now configurable.

• Add a heartbeat method to know if the connection has fail, closes #3.

• Change the callback signature. It now takes the channel as first parameter, closes: #47.

1.4.15 Aioamqp 0.4.0

• Call the error callback on all circumtstances.

1.4. Changelog 17

aioamqp Documentation, Release 0.15.0

1.4.16 Aioamqp 0.3.0

• The consume callback takes now 3 parameters: body, envelope, properties, closes #33.

• Channel ids are now recycled, closes #36.

1.4.17 Aioamqp 0.2.1

• connect returns a transport and protocol instance.

1.4.18 Aioamqp 0.2.0

• Use a callback to consume messages.

18 Chapter 1. Limitations

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

19

aioamqp Documentation, Release 0.15.0

20 Chapter 2. Indices and tables

Python Module Index

a
aioamqp, 3

21

aioamqp Documentation, Release 0.15.0

22 Python Module Index

Index

A
aioamqp (module), 3

C
connect() (in module aioamqp), 4

E
exchange_bind() (aioamqp.Channel method), 9
exchange_declare() (aioamqp.Channel method), 8
exchange_delete() (aioamqp.Channel method), 9
exchange_unbind() (aioamqp.Channel method), 9

Q
queue_bind() (aioamqp.Channel method), 8
queue_declare() (aioamqp.Channel method), 7
queue_delete() (aioamqp.Channel method), 7
queue_purge() (aioamqp.Channel method), 8
queue_unbind() (aioamqp.Channel method), 8

23

	Limitations
	Introduction
	API
	Examples
	Changelog

	Indices and tables
	Python Module Index
	Index

